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1. Formulation of the Problem. The problem of the strain of a porous material containing a large number of spherical 

pores is almost impossible to solve exactly. Therefore an approximate approach is widely used in which averaging transforms 

the porous material to a continuous one with effective moduli of elasticity and yield surface. Today there are a large number 

of averaging methods [1-6]. 

Here the simplest method of virial decomposition is chosen, which is valid for a small volumetric pore composition, 

and which is accurate to terms O(m12), where m 1 < < 1. The limitation comes from ignoring elastic interaction between pores 

in the virial decomposition [3]. The average stresses aij and strains eij of the porous material are determined by formulas [3, 

chapter 5, paragraph 4], which in our notation have the form 

~0 = mle~ + m2~:~, a 0 = m2<j,  (1 .1 )  

where eij~ and eij s are the average strains in the pore and the material; aij s is the average stress in the material; m 1 and m 2 are 

the volumetric concentrations of the pores and the material, for which the following formulas are valid 

4 
m,~ = -: :rr.a3n, m l  + m2 = 1 

where n and a are the concentration and radius of the spherical pores. In the elastic case, the magnitude of eij s is determined 

by Hooke's law [31 

s 1 s 
eij = "~ ekk~3,i + ~ ,  ~.i = S i j /  (2p.sm2), 

e~,~ = - P / ( K s m 2 ) ,  oq = -p~5 0 + S O. 
(1.2) 

Here/~s is the shear modulus and K s is the bulk compression modulus of the material; p is the pressure; Sij and eij are the stress 

and strain deviators; and ~ij is the Kronecker delta. In the plastic case, eij s is found from the Prandtl-Reiss relationships (see 
paragraph 3). 

The pore strain eij ~ is determined from Eshelby's solution [2]. If the stresses are high enough, then stress concentrations 

around the pore create a plastic zone and the strain becomes elastic-plastic. In this case there is no exact solution, and an 

approximate solution must be constructed for the average eij 0. We choose a coordinate system which coincides with the major 

axes of the stress and strain (tensors the material is isotropic), and represent the pore strain ei ~ in the form 

0 $ r = ei + u J a ,  
(1.3) 

where ~i  s is the strain in the material if there were no pores, and ui ~ is the additional displacement of the pore along the i-th 

axis, which displacement is related to the stress concentration. The value of ei s is determined from Eqs. (1.2), and ui ~ is deter- 
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mined from the approximate solution. In order to construct the approximate solution, the whole volume is divided into spherical 

cells such that the center of each cell has a pore of radius a [1, 7-9] (Fig. 1). The cell radius is found from the formula 

b = a/m~/3. 

If the boundary conditions are constant, it is assumed [1] that a stress oij'Y that coincides with the average stress aij is applied 

to the cell surface (the Reiss method [1-3]). Thus, the problem 

Vio,)--0 , h i , = , = 0 ,  Al,=~=o,inj,  i , j = 1 , 2 , 3 ,  

t i L i t ~ = - P % 0  + S,], e O = -j e,k6 o + e~, ek, = - p ' / K , ,  

a (I .4) ei} = S,)/2p.,, I ~ < ~ ,  I~ = T S,;S ~, 

�9 l 1 
e,; = ~ k,; + ~s~, I~ = ~, ~,) = ~ ( v , ~  ~- V~u,) 

must be solved in the cell a < r < b. Here the nj are components of the vector normal to the cell boundary (Fig. 1), and eij' 

and aij' are the microstrains and microstresses in the cell. In the elastic-plastic case there is no exact solution to Eqs. (1.4); 

therefore we seek an approximate solution which satisfies the equilibrium equations only along r, and the system of equations 

has the form [10] 

do; (o; - %) 
d-'-7+2' =0, 06=o,, /,1,=.=0, Ll,fn=0",, (i.5) 

r 

where the subscripts r, O, and r are the components of the spherical coordinate system in the cell, and a n is the normal stress 

applied at the cell boundary: 

o. = - p  + Sln~ + S2n~ + S3nJ. (1.6) 

The equilibrium equations are not solved for 0 and ~o, and we approximately set u 0 = u~, = 0. The system (1.5) and (1.6) is 

solved in the approximation that the material is not work-hardened in the plastic region; therefore the yield strength Ys = const. 

The solution to Eqs. (1.5) and (1.6) for the spherical tensor of average stresses a n = - p  is known [10] and is determined by 

the following formulas: 

in the elastic case (c < r < b) 

o ~ = - p + p  1 +  1 -  ; 

i 

(1.7) 

and in the plastic case (a < r < c) 

' - 2• Y~ In r a r  -- a ~ o,--•215 , ' ' ( 1 . 8 )  
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where • = 1 in tension, x = - 1  in compression, and c is the radius of the plastic zone (see Fig. 1). We neglect the 

compressibility of the material and represent the displacements in the form 

[ ~  P b3a 3 
4~ (b3 _ ~ ~ ,  I Pl ~< i pol, 

Ur = Ys c 3 
6~s ~ '  Ip01 < IPl < ]P*], 

t 
3 

p + 5 •  1 -  + 3 I n  = 0 ,  

p o = - - ~ •  1 -  , p . = - 2 •  ln a ,  

•  p < 0 ;  x = - l ,  p > 0 .  

The system of Eqs. (1.7)-(1.9) is valid when the inequality [ p [ < ! P* [ is satisfied. When it is not, the equilibrium 
equations (1.5) have no solutions. The approximate solution for a non-spherical stress tensor (trij = -P6ij + Sij) is determined 

from Eqs. (1.7)-(1.9), in which we must make the substitution 

p -" p - ( s l .~  + s2ng + s3 . l ) .  

As a result, the displacement of the pore surface along the i-th axis in the elastic case is given by the formula 

1.10 = P __b3a + Si b3a 
4~.s (b 3_a 3) 4p.s (b 3_ a 3) ' 

and in the elastic-plastic case by the formulas 
3 Ys ci 

u~ = • a <~ ci < b, 6~ts a 2 ' 

3 3 

o, = -~ xY~ 1 -  + In  

1, oi > 0, 
x =  -1 ,  o i<O.  

(1.10) 

3 
+ , n  / 

/ (1.11) 

By substituting (1.2), (1.10), and (1.11) in Eq. (1.3), we fred the pore strain ej ~ and find the average strain ej from Eq. (1. t). 
For the elastic strain, the approximate solution (1.3) and (1.10) coincides well enough with Eshelby's exact solution [see Eqs. 
(2.2) and (2.3)]. There is no exact solution when a plastic zone arises. Therefore, in order to verify the method, we examine 

the tension in a plane with holes in Sec 2. The approximate solution (2.12) constructed by this method was compared with D. 
D. Ivlev's solution (2.10) [10]. The results (2.13) show that the relative error in e i does not exceed 16%, which is completely 
satisfactory. 

2. Calculation of t~ and K. Let the pressure p satisfy the inequality ] p i < [ Po ] ; then the plastic zone does not 
arise and the cell deforms elasticly. By substituting ui ~ from Eq. (1.10) into Eqs. (1.1) and (1.3) we use Eq. (1.2) and obtain 
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, '  ( 
-if, , r e :  K, m J  I + 

Pal = ~tsm2/(1 + m ~ / 2 ) .  

2 (I - 2v)}' 

(2.1) 

By expanding the expressions for [the elastic] Kel and #e~ in powers of m I, we find 

(3 (3 )  
g ~  K, 1 - ~ m l  (l--i--Z~v))' ~tel = /x ,  1 - ~ t n l  . (2 .2)  

The corresponding elastic constants obtained with Eshelby's exact solution [2, 3] have the form 

( 3 o-,)~ ( 5 ) K,=K, l--~ml~J, ~ = ~ ,  1 - ~ m l ,  
(2.3) 

where the assumed v = 1/2 in calculating #T" Comparison of Eqs. (2.2) and (2.3) shows that the expressions for Kel and K T 

coincide, and the difference in # is small, on the order of (/2, r - / Z e l ) / # e  I . .~ 0.16m 1. 

If ] p ] > ] P0 ] , a plastic zone arises in the cell and the strains e i become elastic-plastic. By substituting ui ~ from 

(1.11) into Eqs. (1.1) and (1.3), we obtain 

oi 3 vp • Ys 
~, = ~- '~  + e -~  + ~ x , ,  

(c,/3 
2 •  + l n m l - l = l n x i - x i ,  x i =  ~-~j , m l ~ x i <  1. 

(2.4) 

The solution to the second equation, which determines xi, can be found graphically [Fig. 2, where 

f = In x i - -  x i ) .  A monotonic dependence of o i on x i follows from Fig. 2: 

3 
g = ~ o / ( •  and 

= - - -  1 >0 ,  m i n x , <  1, 
dxi xi 

d ~  fo r  xi = 1. 
dxi 

By setting tr i = - p  + S i in (2.4), where ] Si/P I < 1, we expand the right side of the first Eq. (2.4) in a power series in 

Si/P; then by going from the major axes to an arbitrary axis, we obtain [7, 8] 

Sij p 1 
e~ = "-~e ' r = - -~p, eq = ~ e~kc3,j + ely, 

K r=K ,m2 /  1 5 0 - ~ v )  p mum2 ' 

gp = pt, m ~ /  ~l + -i mp , ~1 = -~2 , m .  + mp = 1, r a p =  

(2.5) 

The value of ( c / b )  3 is determined from the second Eq. (1.9), which has the approximate solution 

u 3. 
me --  , me = 1 -- 

m2 m2 (2.6) 

. p ,  The strain eij in (2.5) is the sum of the elastic strains eij e and the plastic strains ~ij , the latter is found from the equations 
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e p, e So/2~te , _ P / K e l  ' ,g V = Eq + ~ij, eij --= l ,  F'kk = 
(2.7) 

Equations (2.5) are valid for the loading stage, which is determined by the condition that the work of the stresses on the plastic 

strains must be positive [11]: 

"pt ~ p, (Jij~if'> 0., Eij -- dtii / d t .  (2.8) 

By using (2.1) and (2.5), we represent the plastic strains as 

eC; = - p  , d/= T - . 

By differentiating the left and right sides of these expressions with respect to t and considering the explicit forms of Kp, Kei, 

/~p and/.tel, we obtain 

�9 ,_  S0 (mr- m ~ ) +  .S0,i!e 
4 - g ~  ,.~,.o 4~,d' 

,,L-v= 3 b ,np where 
2 •  me 

is determined from (1.9) and (2.5). By rewriting the inequality (2.8) in the form 

-p~;  + sij4'> 0 

and substituting the expressions fo r  eij p' and ~kk p' into it, we find the load condition and the condition for the applicability of 
the system (2.5): 

1>0, /o<~q<pL i =L~ 
d t  ' 

3 
r, = ~ m~ I~ = p2, I2 = 7 &j&i. 

I'~l e rtl 2 

(2.9) 

In the other cases the strain is elastic and is described by Hooke's law with constants/%1 and Kej [see (2.1)]. The fact that the 

inequality (2.8) is satisfied shows that this model satisfies the second law of thermodynamics, because the entropy change is 
determined by the formula [12] 

1 

In order to estimate the error of this method, we examine the problem of stretching a plain with circular holes of radius 
a, where the hole region is completely plastic. The material strain ti T in this case is determined by D. D. Ivlev's formulas (see 
(8.27) from [10]); in our notation it has the form 

- -  T ~ . ~  U 0 ~ . . ~  ' eT = ~ 1 + ~ -  , tkk r ' 2~tsr 

k = Y , /V~ (Si /k < 1). 

(2.10) 

We find the approximate value of eiappr by using a method given in [i0]. Under a pressure p, the material displacement is [10] 

u = Uo, c 2 = a2/exp (1 + p / k ) ,  (2.11) 
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where u o is determined in (2.10). We replace p --, p - S i in (2.11) and expand [the result] in a Taylor series in powers of 

(Si/k), and consider (1,1) and (1.3) to obtain 

eappr Si 11.~__~) appr 3uo (2.12) ~ e ] '  ~ =-7-" 

From Eqs. (2.10) and (2.12) we find the relative error in determining the strain: 

b e  i t - -  X C 2 e ?  p 12 2 
- -  =x(~-~xl, x=-~, ~el = P r -  e, ,  m l  = --}-. (2.13) 
eiapp r \ ] r r 

From this it follows that the maximum relative error does not exceed 0.16. 
3. Plasticity. Up to now, we have considered the case where the average stresses do not lie on the yield surface and 

the occurrence of plastic deformation is related to the microstress concentrations near the pore. After the average stresses Sij 

reach the yield surface, plastic strains eijP" arise, which are determined by the associative flow yield [7-9] 

' ~ ( 3 . 1 )  ~"=~'~, 

where �9 is the yield surface, which is found from the equation q~(I l, 12, ml) = 0. The total strain eij is represented as a sum 

~ = ~ + ~ '+  e0 ~", (3.2) 

where eij e and eijP' are found from (2.5) and (2.7). By following [9], we write q~ as a function of 11, 12, and m s in the form 

3 
= -2 &fig _ 1,2 (p, mO" In order to determine y2, we make use of the fact that the microstresses lie on the Mises yield 

3 t t surface -~ So& j = ~ during plastic yield. By averaging this formula over the material volume, we obtain 

~S,,S, i + -~ 

t t . so  = m,  (s,~ls, s,~ = so - <so)s, ( so) ,  = o.  (3.3) 

The quantity (S~"S~), is the average of the solution (1.7) and (1.8) in the cell: 

[3 ~,,,~ Ipl < Ipol, 

<soso),  = [~ ~ l - - - , ~ , /  Ipol < Ipl < Ip.I. 

By substituting (S0'~7), into (3.3), we find the yield surface of the porous material: 

3 
= 2 SoS, j _ y2 = O, 

I ~ .2  9 
1,2= Y ; r n 2 - 7  p2rnl' ]Pl ~ ]Pol, (3.4) 

[~m2m~, ]Po[ < [P[ < [P,I- 

Direct numerical calculations have shown [7, 8] that (3.4) coincides with Garson's formula [9]. As Tvergaard noted [13], m 1 
must be replaced by k*m 1 in Garson's formula for cylindrical pores and also in (3.4), where k* = 1.5. For special pores it 
is recommended that k* = 1.7. The factor k* is related to the pressure of regions in the cell which are not considered in 

deriving (3.3). By differentiating (3.2) with respect to time and considering (2.5), (2.7), (3.1), and (3.4), we obtain a 

Prandtl-Reiss type equation 
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2tx 

2-; ~ 2~,) - ~ (~,,~s~, + ~,:~s,~), ~,,.; = i ( v : , ~  - v,v, . ) .  
(3.5) 

Here/~ = gp and K = Kp for 

the condition 

> 0 and po 2 < 11 < p.2; while/z = gel and K = Kel in other cases; X is determined from 

d ~ =  d ~ &yS~- y2 (p, m~, Y,) = 0 ,  

which leads to the equation 

3s,j ds~ o~  do or  ~ ore2 or  2 dr, 
dk Op a~ + Om~ 0~. Or, ag. = O. (3.6) 

By multiplying the first Eq. (3.5) by Sij and considering that ~ = 0, we obtain 

dS O deq 4 ~ 2 r dp (3.7) 
s,, - -~  = 2~ts,j --~ - g ~ r + ~ 7 -~  " 

By substituting (3.7) and the second Eq. (3.5) into (3.6), we find 

dk = 6~tSode o + 2 do ~ 

)( +) or  ~ m~ o ?  
oy~ dY" / 41x Y 2 + 3 Oral -~p " 

(3.8) 

= Y~(e~js~) and an equation of state p = p (p, ~'). Here  we consider an Closure of  (3.8) requires specifying a hardening law Y, P p 

ideal plastic material, so Ys = const. The equation of state is given in the usual form that considers thermal effects 

p = p ~ + p T ,  ~ ' = ~ ' = + . ~ ' .  p~=rp~' . ,  

r / L  = g/(m2rs), ~ = cvr, 

~f~ = K e l  (t;k) 2 + ~tele~e=,i / P ,  Px = --Kel~kk, 

where T is the temperature, c v is the heat capacity; ~', ~=, and ~f, are the specific energy, the "cold" energy and the thermal 

energy; Px and PT are the cold and thermal pressure; and I '  is the Grtineisen coefficient. The increment in the specific entropy 

1 o0d~ which along with (3.2) gives for plastic flow is determined by the equation [12] dS = -~  

1 p~ 1 . p .  
dS = -~  oode o + -~  aoae 0 . (3.9) 

ps As was shown above in Eq. (2 . 8), the inequality oodee' > 0 is valid when i > 0andPo 2 < I 1 < p,2; in other cases %d% = O, 

because e, d~0 = 0. Therefore the ftrst term in (3.9) is greater than or equal to zero. We now clarify the sign of the second 

term. By de te rmin ing  d~"  f rom (3.1) and considering (3.4), we find 

,J--,l ~ , dk > 0. (3.10) 
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The yield surface (3.4) satisfies the inequality p(0y2/0p) _< 0; therefore Eq. (3.10) is greater than zero. I f I  2 < y2  then. d ~ "  = 0 

and %d~"  = 0 ,  so that % a  tj > 0 in the general case. By substituting these expressions into (3.9) we obtain dS > 0. 

4. Discussion of  Results. Based on two examples, we examine the basic features of a porous material within the 

framework of the model presented here. In the first example we will assume that the stress tensor is spherical (aij = -P6ij  ). 

Then the function p(ekk) for the load with a plastic zone is determined from the first and third Eqs. (2.5). This dependence is 

shown as the curve OBC in Fig. 3. Unloading from the state C occurs along the line Ap = --KelAekk. Subsequent loading 

to the point C also occurs along the line EC (self-loading [11]). At the point D (p = [ P* I ) we have dp/dekk = 0, while 

for p > [ p .  I the pore becomes unstable and the pore is compressed (or grows). If the plastic zone is not considered, then 

loading and unloading occur along the line OA, which is described by the equation p = --Kelekk. 

In the second example we first apply a constant pressure p to the porous material, and then apply shear stresses S i : 

S 3 = 0 and S 1 + S 2 = 0. Two cases of loading from the same porosity m 1 are represented in the S 1, e 1 plane in Fig. 4. In 

the first case, p = Pl = const and I Pl I < I P0 I , as shown by the lines OAE, so the plastic zone does not arise. When 

S 1 is shifted to the point A, loading and unloading are described by the equation S 1 = 2/zele 1. Plastic yield starts at point A, 1 
therefore S 1 = 7 ' /Y(Pt ,  m,) = const on the line AE. In the second case I P2 I > I Po I , P2 = const, a plastic zone arises, 

and the loading on the segment OC satisfies the equation S 1 = 2/zpe 1. Unloading from point B is determined by the equation 

AS 1 = 2#elAe 1 . Subsequent loading to point B is also described by this equation. Plastic flow (3.1) with a constant stress S 1 
1 

= 7 ' / Y  (P', m~)' starts at the point C, where Y(p, ml) is found from (3.4). The positions of the lines OAE and OCH in Fig. 

4 are determined by the inequalities I P2 I > I Pl I , Y(P2, ml) < Y(P], ml),  and/Zp < I%1. We note that if the plastic zone 
is not considered, then the loading curve coincides with OAE. By using Eqs. (2.1), (2.5), and (2.7), we define the plastic strain 

elP' on the segment OC (Fig. 4) in the form 

~ , =  S, St = S, (m e -  m 0 (4.1) 
2~p 2~el 2~; 'hem2 

At point C, according to (3.4), 

(4 .2)  Sl =7,~v'-~'2me. 

By substituting (4.2) into (4.1), at point C we obtain 

Y, (m r - ml) 
~ ' 1 c = 2 r  ~ , 

from which the maximum strain at mp = 1 is 

r, ~ ( 4 . 3 )  
(e~l')max = 2 r " 

It follows from Figs. 3 and 4 and an evaluation of (4.3) that considering the plastic zone qualitatively changes the loading curve 

of a porous material. 
The plastic zone also has a large effect on the yield strength as a function of  pressure, which is determined by Eqs. 

(3.4). If this effect is not considered, then Y(p) has the form 

]I2 2 2 9 2 = Y;rn2 - -~ p ml .  (4.4) 

, 2 . r n  2 . 2 
It follows from Eq. (4.4) that Y = 0 for p~ ~ Y, - - -~ ,  while from (3.4) we have Y = 0 for p2 = ~ Y~ In 1 . .  

t1.1i "II 
As a result 

we obtain that the ratio of critical pressures pl*/P2* ~ oo as m 1 ~ 0. 
This work was done under a program of the Russian Fund for Fundamental Research. 
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